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Abstract—The proliferation of the sixth generation (6G) net-
works demands innovative antenna technologies to fully unlock
spatial degrees of freedom. Large-scale position-reconfigurable
antenna (PRA) arrays have emerged as a promising solution,
while existing antenna position design approaches often suffer
from high computational complexity and neglect the near-field
effect. In this paper, we propose efficient methods to determine
the antenna positions for near-field line-of-sight communication.
Specifically, by transforming the antenna positions into the an-
gular domain, we reformulate the achievable rate maximization
problem as a Vandermonde matrix determinant maximization
problem, which is known as a weighted Fekete problem, whose
optimal solution can be obtained by off-the-shelf solvers. To fur-
ther reduce the computational complexity, we propose a greedy
algorithm to find the asymptotically optimal antenna positions
accommodating practical physical constraints. Simulation results
demonstrate that the proposed scheme yields a considerable
achievable rate gain compared to the conventional uniform linear
array scheme in the near-field region with up to 35× reduction
in design complexity.

I. INTRODUCTION

Beyond fifth generation (B5G) and sixth generation (6G)
networks demand unprecedented data rates, reliability, and
massive connectivity [1]. Accommodating these stringent re-
quirements calls for innovative strategies to unlock and exploit
the spatial degrees of freedom (DoFs), which are pivotal in
advancing the performance of wireless communication sys-
tems. In recent years, massive multiple-input multiple-output
(MIMO) antenna systems have proven highly effective in en-
hancing spatial multiplexing efficiency. To further extend their
capabilities, large-scale reconfigurable antenna technology,
such as reconfigurable intelligent surfaces (RIS) [2], presents
energy-efficient solutions for boosting spatial multiplexing
capabilities [3].

Driven by recent breakthroughs in mechanical innova-
tions and antenna technologies, position-reconfigurable an-
tenna (PRA) technologies such as movable antennas (MA) [4],
fluid antenna systems (FAS) [5], and pinching antennas [6],
have garnered increasing interests from both academia and
industry. These antenna architectures enable more favorable
propagation environments and offer more precise manipulation
of radiation patterns, thereby improving overall communica-
tion performance. With the widespread adoption of massive
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MIMO arrays, there is an urgent need for optimal design
strategies specifically tailored to PRA arrays with a large
number of elements.

Previous works have validated the remarkable performance
gains of PRAs compared to conventional fixed-position anten-
nas in wireless systems [7]–[11]. However, significant gaps
remain in current optimization-oriented research. First of all,
existing works heavily rely on numerical optimization algo-
rithms [8]–[11], which may entail excessively high compu-
tational complexity due to the intrinsic iterative procedures
and nested loops of such algorithms. Besides, in massive
MIMO systems, the aperture of antenna arrays becomes so
large that near-field effects can no longer be ignored [12].
Although it offers additional spatial DoFs to be leveraged,
the spherical wave model introduces substantial challenges in
system design, and thus, only limited attention has been paid
to this regime in existing studies [7]–[9], [11].

In this paper, we address the efficient antenna placement
problem in the near-field line-of-sight (LoS) scenario, and
also tackle the computational complexity issue associated with
the conventional numerical methods. In particular, we first
transform the position of antennas into the angular domain,
and formulate the corresponding position optimization prob-
lem into a weighted Fekete problem, which is proved to be
a concave problem and can be solved by mathematical tools
such as CVX. We further develop a greedy algorithm based on
the Leja sequence by incrementally constructing the antenna
set via a series of low-dimensional sub-problems, which not
only asymptotically approaches the optimal antenna positions
but also significantly reduces the computational complexity.
Numerical results clearly demonstrate the performance im-
provement of the proposed greedy method over various bench-
mark schemes. Moreover, as the number of antennas increases,
the proposed greedy algorithm asymptotically approaches the
solution provided by CVX, while reducing computational
complexity by up to three orders of magnitude.

Notations: We use normal-face letters to denote scalars
and lowercase (uppercase) boldface letters to denote column
vectors (matrices). The element at the k-th row and the m-
th column of matrix H is denoted as H[k,m], and the n-th
element in the vector h is denoted by h[n]. diag(h) generates
a square matrix with the entries of h on its main diagonal.
The superscripts (·)T , (·)∗, and (·)H represent the transpose,
conjugate, and conjugate transpose operators, respectively.
det(·), and Tr(·) denote the determinant and trace operators,
respectively. The imaginary unit is represented as ȷ such that
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Fig. 1. (a) The considered near-field communication scenario and (b) the
schematic diagram of massive MAs, with the 1-st and M -th antennas fixed
at the edges.

ȷ2 = −1. R denotes the set of real numbers.

II. SYSTEM MODEL

In this section, we describe the system model adopted for
the antenna position design, including both the massive MA
configuration and the corresponding channel model.

A. Massive Position-Reconfigurable Antennas

Consider a point-to-point massive MIMO downlink trans-
mission scenario with M MAs1 at the base station (BS) side
and N fixed-position antennas at the user equipment (UE)
side. As shown in Fig. 1, the Cartesian coordinate system is
established with the centroid of the BS array coinciding with
its origin O(0, 0), while the BS array aligns along the x-axis.
The coordinates of the m-th element on the BS array and
the n-th element on the UE array are given by (x

(m)
BS , 0) and

(x
(n)
UE, y

(n)
UE), respectively.

In this paper, the x coordinates of BS antenna elements, i.e.,
{x(1)

BS, x
(2)
BS, · · · , x

(M)
BS }, are strictly increasing specified by

−A

2
= x

(1)
BS < x

(2)
BS < · · · < x

(M)
BS =

A

2
, (1)

where A denotes the standard BS array aperture.

B. Channel Model

We adopt the spherical wave model [12] to characterize
the near-field wireless channel in this paper. Specifically, the
spatial response between the m-th antenna on the BS array
and the n-th antenna on the UE array is modeled by

h (rm,n) =
eȷκrm,n

rm,n
, (2)

where rm,n denotes the distance between the m-th and n-th
antenna elements on the BS and UE arrays, respectively, given
by

rm,n =

√(
y
(n)
UE

)2

+
(
x
(n)
UE − x

(m)
BS

)2

, (3)

and κ = 2π/λ is the wavenumber with λ being the carrier
wavelength.

1To simplify the problem and promote practicality, this work only focuses
on MAs at BS, with fixed antenna elements at the UE side. However, due to
the spatial reciprocity of the channel model, the proposed methodology can
also be extended to UEs with MAs.

As the LoS component is generally not likely to experience
blockage and delivers a much stronger signal than the non-line-
of-sight (NLoS) counterparts in the near-field region [13], the
near-field channel is mainly dominated by the LoS component,
which can be expressed as

Hx[n,m] = h (rm,n) . (4)

In (4), x = [x
(1)
BS, x

(2)
BS, · · · , x

(M)
BS ] denotes the position vector

of the BS antenna elements on the x-axis. Hence, the downlink
channel matrix is a function of x.

III. PROBLEM FORMULATION AND ANALYSIS

In this section, we reformulate the near-field achievable rate
maximization problem as a weighted Fekete problem, where
the coordinates of the antenna elements are transformed into
the angular domain and treated as optimization variables.

With a given antenna position vector x, the achievable rate
is given by

Rx = log2 det

(
IN +

1

σ2
n

HxQHH
x

)
, (5)

where σ2
n is the power of additive white Gaussian noise

(AWGN), and Q is the transmit covariance matrix. In this
paper, since our primary focus is on the performance gains
introduced by the MA, we assume an isotropic transmission
with Q = PT

M IM , where PT denotes the total transmit power.
Therefore, the achievable rate is further given by

Rx = log2 det
(
IN +

ρ

M
HxH

H
x

)
, (6)

where ρ = PT

σ2
n

denotes the signal-to-noise ratio (SNR). Our
objective is to determine the optimal antenna positions x such
that, by reorganizing the intrinsic structure of the channel
matrix Hx, more orthogonal transmission modes can be ex-
cited and fully exploited to achieve a higher achievable rate.
Accordingly, the overall design problem can be formulated as

P1 :

max
x

Rx

s.t. x[M ] = −x[1] =
A

2
,

x[m+ 1]− x[m] > 0, 1 ≤ m ≤ M − 1,

(7)

where the first constraint confines the moving area within the
aperture [−A/2, A/2], while the second enforces the ordered
structure of x in (1).

In the near-field region, the received signal exhibits a much
slighter fading effect compared to far-field region, and hence,
the high SNR ρ ≫ 1 holds. The original achievable rate
objective in (5) can then be accurately approximated by

Rx ≃ log2 det
(
ρHxH

H
x

)
≜ R̃x. (8)

Revisiting the channel model in (4), we need to derive the
distance terms rm,n to accomplish the formulation. As shown
in Fig. 1, the centroid coordinate of the UE array is (x0, y0),
and the coordinate of the n-th antenna on the UE array is then
given by {

x
(n)
UE = x0 + dn cos θUE

y
(n)
UE = y0 + dn sin θUE

, (9)



where θUE is the azimuth angle of the UE array, and dn
denotes the relative distance from the n-th element to the
centroid (x0, y0). By substituting (9) into (3), we have

rm,n (10)

=

√
(y0+dn sin θUE)

2
+
(
x0 + dn cos θUE−x

(m)
BS

)2

=

√
r2m + 2dn

(
y0 sin θUE+

(
x0−x

(m)
BS

)
cos θUE

)
+ d2n

where r2m = y20+(x0−x
(m)
BS )2 represents the squared distance

from the centroid of the UE to the m-th element on the BS ar-
ray. According to Fig. 1, in a typical near-field communication
scenario, the communication distance rm is far larger than the
aperture of the UE array, i.e., rm ≫ max(dn). Therefore, the
second-order small quantity d2n in (10) is negligible and we
perform a binomial expansion [12] as

rm,n ≃ rm+
dn
rm

(
y0 sin θUE +

(
x0 − x

(m)
BS

)
cos θUE

)
≜ r̃m,n.

(11)

Since we have cosφm = y0/rm and sinφm = (x
(m)
BS −

x0)/rm, (11) further yields

r̃m,n = rm + dn (sin θUE cosφm − cos θUE sinφm)

= y0 secφm + dn sin (θUE − φm) .
(12)

Note that in the spherical wave model (2), the distance term
in the phase has a significantly greater impact on the channel
characteristics than the distance term in the denominator. This
is because the wavenumber κ = 2π/λ is typically very large,
especially at high carrier frequencies. In contrast, the physical
size of the UE array is generally small, resulting in only
limited absolute variation in distance r̃m,n across different UE
antennas. To facilitate tractable analysis, we therefore neglect
the dn-dependent variation in r̃m,n, and retain only rm in the
denominator of (2). Substituting the distance terms r̃m,n and
rm into the phase and denominator of the channel model (2),
respectively, we have

Hx[n,m] ≃ eȷκ(rm+dn sin(θUE−φm))

rm
≜ H̃x[n,m]. (13)

Since the denominator rm depends only on the antenna
index m of the BS array, the approximated channel matrix
H̃x can be decomposed by

H̃x = PDT, (14)

where DT is an M -dimensional diagonal matrix given by

DT = diag

([
eȷκr1

r1
,
eȷκr2

r2
, · · · , e

ȷκrM

rM

])
, (15)

and P contains only the phase terms with cross-dependence
between m and n, to which we employ Taylor expansion [14]
for its (n,m)-th entry as

P[n,m] = e−ȷκdn sin(φm−θUE)

=

∞∑
k=0

(−ȷκdn sin (φm − θUE))
k

k!
.

(16)

Hence, matrix P can be decomposed as

P = VRΣVH
T , (17)

with Σ = diag
(
(−ȷκ)0/0!, (−ȷκ)1/1!, · · ·

)
as a diagonal

matrix with infinite columns, while VT and VR are Vander-
monde matrices with infinite columns at the BS and UE sides,
respectively, sharing a similar form as

VT =


1 sin (φ1 − θUE) sin2 (φ1 − θUE) · · ·
1 sin (φ2 − θUE) sin2 (φ2 − θUE) · · ·
...

...
... · · ·

1 sin (φM − θUE) sin2 (φM − θUE) · · ·

 (18)

and

VR =


1 d1 d21 · · ·
1 d2 d22 · · ·
...

...
... · · ·

1 dN d2N · · ·

 . (19)

Note that the absolute values of the diagonal entries of Σ∣∣∣∣∣ (−ȷκ)
k

k!

∣∣∣∣∣ ∝ √
k + 1

(
κe

k + 1

)k+1

(20)

decay factorially with the value of k. Therefore, we can
truncate the matrices Σ, VT, and VR to M columns, with
negligible error (when M is large) as

P ≃ V
(M)
R Σ(M)

(
V

(M)
T

)H

≜ P(M). (21)

Substituting (13), (14), and (21) into (8), we further simplify
the objective function R̃x in the near-field region as

R̃x = log2 det
(
ρHxH

H
x

)
(22)

≃ N log2ρ+ log2det
(
DTD

H
T

)
+ log2det

(
P(M)

(
P(M)

)H
)

= R0 + log2det
(
DTD

H
T

)
+ log2det

((
V

(M)
T

)H

V
(M)
T

)
,

where the rate constant

R0 = N log2ρ+ log2det

((
V

(M)
R

)H
V

(M)
R

)
+ 2 log2det

(
Σ(M)

)
only depends on the SNR ρ and the fixed geometry of the UE
array. Therefore, maximizing the achievable rate (8) in the
near-field region is equivalent to maximizing the determinant
related to the diagonal matrix DT and the Vandermonde matrix
V

(M)
T , which are respectively given by

det
(
DTD

H
T

)
=

M∏
m=1

1

r2m
, (23)

and

det

((
V

(M)
T

)H
V

(M)
T

)
=

∏
1≤i<j≤M

(sinϕj − sinϕi)
2
, (24)

with range2 ϕi = φi − θUE ∈ [−π/2, π/2].

2The range is chosen based on practical considerations, since UE arrays are
typically oriented so that their main boresight approximately faces the serving
BS array.



Denote the antenna position in the angular domain as

sm = sin (φm − θUE)

= sin

(
arctan

(
x
(m)
BS −x0

y0

)
− θUE

)
.

(25)

Then, the distance term rm in (23) can then be expressed by

r2m =
y20

cos2 φm
=

y20
1− s̃2m

, (26)

where s̃m = sinφm = sin (arcsin sm + θUE). By substitut-
ing (26) into (23), problem P1 is equivalent to

P2 :
max

s
2

∑
1≤i<j≤M

log2 (sj−si) +

M∑
m=1

log2
(
1− s̃2m

)
s.t. smin = s1 < s2 < · · · < sM = smax,

(27)

where smin and smax are given by setting x
(m)
BS in (25) as

−A/2 and A/2, respectively. Problem P2 is known as the
weighted Fekete problem [15, p. 114, Ch. III] with weighting
function

w(s) = 1− s̃2 = 1− sin2 (arcsin s+ θUE) , (28)

which generalizes the classical Fekete problem by incorporat-
ing a position-dependent weighting function.

Remark 1. In classical potential theory, the Fekete problem
seeks the optimal placement of M electric charges on a com-
pact set to maximize logarithmic potential energy [15]. In the
presence of an external electric field, this framework extends
to the weighted Fekete problem, where optimal distribution
of charges achieves a balance between mutual repulsion and
external influence. In the context of near-field communication
with MAs, the mutual coupling among antennas corresponds
to the internal interaction, while the field induced by the UE
array serves as the external field. Accordingly, the positions
of M MAs have to be delicately optimized to obtain a state
of equilibrium between these two forces.

IV. PROPOSED OPTIMAL ANTENNA POSITIONS

In this section, we first analyze the convexity of problem P2,
which guarantees the uniqueness of the optimal solution and
enables its numerical computation using existing mathematical
tools. To reduce the computational complexity introduced by
the intrinsic iterative procedures involved in the optimization
algorithm, we further propose a greedy framework to calculate
the asymptotically optimal antenna positions efficiently.

A. Optimal Solution
We first reveal the convexity of problem P2 by the following

lemma.

Lemma 1. Problem P2 is a concave problem with a unique
solution of position vector s.

Proof: Let J be the Hessian matrix of the objective
function J(s) in (27), whose elements are given by

J[m,n] =
∂2J

∂sm∂sn
, (29)

the quadratic form of J with arbitrary non-zero vector v =
[v1, v2, · · · , vM ]T is then given by

Q(v) = vTJv (30)

= −
∑

1≤i<j≤M

(vi − vj)
2

(si − sj)
2 −

M∑
m=1

(2 + tanϕm sin 2φm)v2m
(1− s2m) cos2 φm

,

where the factor 1/ ln 2 is dropped for brevity. The quadratic
form Q(v) is strictly negative with ϕm ∈ [−π/2, π/2] for
any given v ̸= 0. Therefore, the Hessian matrix J is negative
definite, i.e., J ≺ 0, which establishes that J(s) is strictly
concave. Moreover, as the feasible set defined by s1 < s2 <
· · · < sM , where s1 and sM are fixed, is a convex set, P2 is
a convex optimization problem. This guarantees the existence
and uniqueness of the global maximum, which can be obtained
numerically by existing toolboxes such as CVX [16].

B. Greedy Algorithm

However, solving P2 with standard convex optimization is
computationally demanding, as gradient evaluations involve
nested iterations that scale poorly with the number of antennas.
Additionally, incorporating additional physical constraints,
such as minimum antenna spacing [8]–[10], further compro-
mises the convexity of the problem, thereby exacerbating the
computational intractability. To cope with these challenges,
we develop a greedy framework that decomposes P2 into a
sequence of simpler sub-problems, each solved iteratively to
obtain locally optimal positions. This procedure corresponds
to the well-known Leja sequence [17], which has been shown
to asymptotically converge to the optimal solution of the
weighted Fekete problem [15].

Suppose that m − 1 < M positions {s⋆i }
m−1
i=1 have been

determined, when we determine the m-th position sm, the
objective function will be augmented by the pair-wise distance
contribution and the weighting function-related contribution,
according to problem P2, respectively. For the pair-wise
distance part, the additional contribution of the new antenna
element at position s is given by

JD(s) = 2

m−1∑
i=1

log2 |s⋆i − s| . (31)

For the weighting function part, the additional contribution is
given by

JW(s) = log2
(
1− sin2 (arcsin s+ θUE)

)
. (32)

Therefore, the m-th point can be obtained by

s⋆m = argmax
s∈S

(JD(s) + JW(s)) , (33)

where
S = {s ∈ R | s1 < s < sM} (34)

is the feasible region. Note that it is not strictly necessary
to exclude the previously selected m − 1 points from the
feasible region, since the distance-related objective JD(s)
approaches negative infinity at those locations. However, in
practical scenarios, the minimum spacing between adjacent



Algorithm 1 Greedy Antenna Position Design
Input: The number of antenna elements M , the antenna

spacing thresholds ϵ, the aperture of BS array A, the
centroid position (x0, y0), and the azimuth angles θUE of
the UE array.

Output: The positions {x(m)
BS }Mm=1 of M antenna elements

solving P2.
1: Determine s⋆1 = s1 and s⋆2 = sM according to (27).
2: for m = 3, · · · ,M do
3: Update the feasible region Sm according to (35).
4: Determine the position of the m-th antenna element s⋆m

according to (33) over Sm.
5: end for
6: Sort the positions {s⋆i }Mi=1 in ascending order as {si}Mi=1.
7: Obtain the coordinate on the x-axis by (37).
8: return The positions {x(m)

BS }Mm=1 on the x-axis.

antenna elements should not be lower than a given threshold ϵ
to avoid the severe mutual coupling effect. Incorporating such
a constraint, the feasible region at the m-th step is given by

Sm = {s ∈ R | s1 < s < sM} \
m−1⋃
i=1

Bϵ, (35)

where

Bϵ =
{
sin(arctan(x−x0

y0
)− θUE)

∣∣∣|x− x
(m)
BS | < ϵ

}
(36)

represents the set of s values corresponding to the ϵ-
neighborhood around x

(m)
BS on the x-axis. After obtaining

the positions of antenna elements {sm}M−1
m=2 in the angular

domain, according to (25), the coordinates of antennas can be
further obtained by

x
(m)
BS = x0 + y0 tan (θUE + arcsin sm) . (37)

The detailed procedure is summarized in Algorithm 1.

V. NUMERICAL RESULTS

A. System Setup

Throughout the simulation, we deploy M = 128 MAs on
the BS array and N = 8 antennas on the UE array. The carrier
frequency is set as fc = 10 GHz, and the aperture of the BS
array is around A ≈ 2m. The centroid of the UE array is
selected randomly from the near-field region with centroid dis-
tance r0 =

√
x2
0 + y20 and centroid angle φ0 ∈ [−π/3, π/3],

respectively, and the azimuth angle of the UE θUE is selected
ensuring condition φM − π/2 < θUE < φ1 + π/2. The
UE array adopts a ULA configuration with standard spacing
d = λ/2. As the received power is significantly affected by
the distance in the near-field region, we normalize the SNR to
ρ = 20 dB.

In the simulation, we mainly consider the following schemes
for comparison.

• ULA. Both BS and UE are employing ULAs with stan-
dard spacing d.

(a)

(b)
Fig. 2. (a) The achievable rate of different antenna position schemes in the
near-field region and (b) relative performance gain over the conventional ULA
scheme within r0 ∈ [5, 50] m.

• Monte-Carlo (MC). During each simulation step, 2000
random antenna position patterns for the BS array are
generated randomly without spacing constraint.

• Antenna Selection (AS) [7]. Antenna positions are se-
lected from G = 2M uniform grids with the minimum
spacing ϵ = λ/4.

• Proposed Greedy. The BS array obtains the antenna
positions by adopting the proposed greedy scheme with
ϵ = λ/4.

• Proposed Convex Optimization Approach. The antenna
positions are obtained by solving the concave problem P2

with mathematical tools such as CVX without a spacing
constraint.

B. Simulation Results

We first investigate the achievable rate of different antenna
position schemes with varying distances r0 ∈ [5, 50] m in
the near-field region. As shown in Fig. 2(a), the proposed
schemes consistently attain the highest achievable rate, where
the greedy algorithm (in dashed line) closely matches the
performance of the CVX-based scheme (in ∗ marker). In
contrast, although the AS scheme exhibits comparable per-
formance to the proposed method at shorter distances, its
performance gap gradually widens as r0 increases. As the
centroid distance grows, the near-field effect becomes less
significant, resulting in a general decline in achievable rates
across all schemes. However, as shown in Fig. 2(b), the
relative gain of the proposed schemes over the conventional
ULA scheme gradually increases, sustaining a stable gain of



Fig. 3. (a) Quantile-quantile plot and (b) the standard deviations of antenna
positions.

TABLE I
COMPUTATIONAL COMPLEXITY AND AVERAGE RUNTIME

Methods Computational
Complexity (O)

Ave. Runtime (ms)
M = 16 M = 128

AS [7] MG2(N3+M2N2) 47.4 3.38×103

Prop. CVX* ∼ M4.5 6.42×103 3.47×105

Prop. Greedy GM2 2.19 94.1

* Using interior-point method.

around 8%, which verifies its superiority in practical near-field
communications.

In Fig. 2(b), it is also shown that the proposed greedy
algorithm (ϵ = 0) achieves almost identical performance as the
CVX approach. Hence, we further investigate the asymptotic
relationship between the solutions of these two methods. As
shown in Fig. 3(a), the horizontal axis corresponds to the
antenna positions obtained by CVX, while the vertical axis
corresponds to the results from the greedy algorithm. The line
y = x serves as the reference line, and the deviation of scatter
points from this line directly indicates the discrepancy between
the two solutions. For the case M = 8 on the left-hand-
side, a noticeable offset can be observed for some antenna
elements, implying non-negligible difference between the ob-
tained solutions; For the case M = 32 on the right-hand-side,
such deviations become much insignificant. Fig. 3(b) further
illustrates the standard deviation between the two solutions,
showing that the greedy algorithm rapidly approaches the
optimal target as M grows, and achieves relative convergence
quickly around M = 64.

We finally evaluate the computational complexity of the
proposed methods, as summarized in Table I, where G denotes
the number of searching grids in the comparison algorithms.
Although the AS method provides acceptable performance,
its extremely high computational burden makes it unsuitable
for large-scale scenarios. The CVX-based optimization attains
the optimal solution, but still suffers from prohibitively high
complexity. In contrast, the proposed greedy algorithm offers
significantly reduced complexity by 35 times. This implies the
advantage of the proposed greedy algorithm as an effective yet
scalable design method for near-field LoS communication with
massive MAs.

VI. CONCLUSIONS

In this paper, we developed a novel greedy framework to
solve the achievable rate maximization problem in the near-
field LoS scenario. By transforming the antenna positions
into the angular domain, we formulated the problem into
a weighted Fekete problem, whose unique optimal solution
can be asymptotically approximated by the proposed greedy
strategy. Numerical results demonstrated the superiority in
asymptotic optimality and the computational efficiency of the
proposed algorithm.
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